Short term river flood forecasting with neural networks
نویسنده
چکیده
This paper reports results obtained using artificial neural networks (ANN) models for shortterm river flow forecasting under heavy rain storms, in the upper Serpis river basin (460 km), with the outlet in Beniarrés reservoir (29 hm ). The system is monitored by 6 raingauges, providing 5-min rainfall intensities, while reservoir inflows are derived from depth measurements in the reservoir every half hour and realtime data from controlled discharges in the spillway. In order to produce 1, 2 and 3 hours forecasts, the model makes use of the distributed rainfall information, together with observed discharges in the preceding hours. Several ANN topologies have been tested and compared, including linear and non linear schemes, being in all cases three-layer feedforward networks. Best results are obtained with different architectures for each forecasting horizon, basically due to the decreasing dependence of future inflows with respect to preceding values of the series as the time horizon is increased, while rainfall information increases its importance as a predictor. The ANN architectures finally proposed are achieved through pruning algorithms. Training is performed using the quasi-Newton approach. A specific software was also develop to help in the real-time management of the dam during floods, which incorporates all the relevant information about the dam elements (Tainter-gates, depth-volume relationships,...), and is designed for real-time operation, accepting as inputs the rainfall measurements, reservoir levels and gates opening. Forecasts are made in real-time, including inflows to the dam and discharges under different assumptions for gates operations during the inmediate future hours.
منابع مشابه
Flood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique
Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...
متن کاملIntegration of remote sensing and meteorological data to predict flooding time using deep learning algorithm
Accurate flood forecasting is a vital need to reduce its risks. Due to the complicated structure of flood and river flow, it is somehow difficult to solve this problem. Artificial neural networks, such as frequent neural networks, offer good performance in time series data. In recent years, the use of Long Short Term Memory networks hase attracted much attention due to the faults of frequent ne...
متن کاملShort-term Streamflow Forecasting: ARIMA Vs Neural Networks
Streamflow forecasting is very important for water resources management and flood defence. In this paper two forecasting methods are compared: ARIMA versus a multilayer perceptron neural network. This comparison is done by forecasting a streamflow of a Mexican river. Surprising results showed that in a monthly basis, ARIMA has lower prediction errors than this Neural Network. Key-Words: Auto re...
متن کاملEfficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملShort-term and Medium-term Gas Demand Load Forecasting by Neural Networks
The ability of Artificial Neural Network (ANN) for estimating the natural gas demand load for the next day and month of the populated cities has shown to be a real concern. As the most applicable network, the ANN with multi-layer back propagation perceptrons is used to approximate functions. Throughout the current work, the daily effective temperature is determined, and then the weather data w...
متن کاملShort Term Load Forecasting by Using ESN Neural Network Hamedan Province Case Study
Abstract Forecasting electrical energy demand and consumption is one of the important decision-making tools in distributing companies for making contracts scheduling and purchasing electrical energy. This paper studies load consumption modeling in Hamedan city province distribution network by applying ESN neural network. Weather forecasting data such as minimum day temperature, average day temp...
متن کامل